Article ID Journal Published Year Pages File Type
8078769 Energy 2014 6 Pages PDF
Abstract
A novel supersonic microwave co-assistance method (abbreviated as SMC) was used to efficiently synthesize BaMO4: Ln3+ (M = W, Mo; Ln = Eu, Tb) red/green phosphors at low temperature (343 K) in 40 min. X-ray powder diffraction (abbreviated as XRD), scanning electronic microscope (abbreviated as SEM) and photoluminescent spectra techniques (abbreviated as PL) were used to characterize the phosphors. SEM images revealed that shuttle shaped structures were achieved. The fluorescence property of phosphors demonstrated that both BaWO4 and BaMoO4 are efficient matrixes to sensitize europium or terbium. The red/green emissions were greatly enhanced under the simultaneous supersonic and microwave irradiation. We considered that this facile and effective technique owns the advantages of saving energy and shortening reaction time in contrast to conventional methods which may be promising in fabricating luminescent materials.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,