Article ID Journal Published Year Pages File Type
8078787 Energy 2014 11 Pages PDF
Abstract
The effect of Flue Gas Recirculation (FGR) during Oxy-Fuel Combustion in a Rotary Cement Kiln was analyzed by using a CFD model applied to coal combustion process. The CFD model is based on 3D-balance equations for mass, species, energy and momentum. Turbulence and radiation model coupled to a chemical kinetic mechanism for pyrolysis processes, gas-solid and gas-gas reactions was included to predicts species and flame temperature distribution, as well as convective and radiation energy fluxes. The model was used to study coal combustion with air and with oxygen for FGR between 30 and 85% as controller parameter for temperature in the process. Flame length effect and heat transfer by convection and radiation to the clinkering process for several recirculation ratios was studied. Theoretical studies predicted a located increase of energy flux and a reduction in flame length with respect to the traditional system which is based on air combustion. The impact of FGR on the oxy-fuel combustion process and different energy scenarios in cement kilns to increase energy efficiency and clinker production were studied and evaluated. Simulation results were in close agreement with experimental data, where the maximum deviation was 7%.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , ,