Article ID Journal Published Year Pages File Type
8078822 Energy 2014 12 Pages PDF
Abstract
The experimental results indicate that the maximum heat release rate, maximum in-cylinder pressure, and NOx emissions of G40 and G50 compound HCCI combustion significantly increase when compared to that of G30 compound HCCI combustion. Moreover, it is determined that the intake air boost has great potential to reduce the NOx and soot emissions of compound HCCI combustion simultaneously. CO and HC emissions of optimized G30 compound HCCI combustion with/without boost are relatively higher compared to that of traditional DICI (direct injection compression ignition) combustion. The NOx and soot emissions of optimized G30 compound HCCI combustion with intake air boost are far lower than those of the DICI diesel engine. Specifically, the NOx emissions can be maintained within 100 ppm, and the soot emissions are below 10% at the full load ranges.
Keywords
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , ,