Article ID Journal Published Year Pages File Type
808019 Reliability Engineering & System Safety 2010 8 Pages PDF
Abstract

Failure data are often modeled using continuous distributions. However, a discrete distribution can be appropriate for modeling interval or grouped data. When failure data come from a complex system, a simple discrete model can be inappropriate for modeling such data. This paper presents two types of discrete distributions. One is formed by exponentiating an underlying distribution, and the other is a two-fold competing risk model. The paper focuses on two special distributions: (a) exponentiated Poisson distribution and (b) competing risk model involving a geometric distribution and an exponentiated Poisson distribution. The competing risk model has a decreasing-followed-by-unimodal mass function and a bathtub-shaped failure rate. Five classical data sets on bus-motor failures can be simultaneously and appropriately fitted by a general 5-parameter competing risk model with the parameters being functions of the number of successive failures. The lifetime and aging characteristics of the fitted distribution are analyzed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,