Article ID Journal Published Year Pages File Type
808155 Theoretical and Applied Mechanics Letters 2016 8 Pages PDF
Abstract

•An enhancement trend of the extreme wind speed is found in the South China Sea (SCS) and the Northwest Pacific (NWP).•Particular attention is paid to the non-stationary process of the extreme wind speed of tropical cyclone.

In offshore engineering design, it is considerably significant to have an adequately accurate estimation of marine environmental parameters, in particular, the extreme wind speed of tropical cyclone (TC) with different return periods to guarantee the safety in projected operating life period. Based on the 71-year (1945–2015) TC data in the Northwest Pacific (NWP) by the Joint Typhoon Warning Center (JTWC) of US, a notable growth of the TC intensity is observed in the context of climate change. The fact implies that the traditional stationary model might be incapable of predicting parameters in the extreme events. Therefore, a non-stationary model is proposed in this study to estimate extreme wind speed in the South China Sea (SCS) and NWP. We find that the extreme wind speeds of different return periods exhibit an evident enhancement trend, for instance, the extreme wind speeds with different return periods by non-stationary model are 4.1%–4.4% higher than stationary ones in SCS. Also, the spatial distribution of extreme wind speed in NWP has been examined with the same methodology by dividing the west sea areas of the NWP 0°–45°N, 105°E–130°E into 45 subareas of 5°×5°, where oil and gas resources are abundant. Similarly, remarkable spacial in-homogeneity in the extreme wind speed is seen in this area: the extreme wind speed with 50-year return period in the subarea (15°N–20°N, 115°E–120°E) of Zhongsha and Dongsha Islands is 73.8 m/s, while that in the subarea of Yellow Sea (30°N–35°N, 120°E–125°E) is only 47.1 m/s. As a result, the present study demonstrates that non-stationary and in-homogeneous effects should be taken into consideration in the estimation of extreme wind speed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,