Article ID Journal Published Year Pages File Type
808253 Reliability Engineering & System Safety 2008 11 Pages PDF
Abstract

Fault-tolerant multiple-phased systems (FTMPS) are defined as systems whose critical components are independently replicated and whose operational life can be partitioned into a set of disjoint periods, called “phases”. Because of their deployment in critical applications, their mission reliability analysis is a task of primary relevance to validate the designs. This paper is focused on the reliability analysis of FTMPS with random phase durations, non-exponentially distributed repair activities and different repair policies. For self-repairable FTMPS with a component-level reconfiguration architecture, we derive several efficient formulations from the underlying structure characteristics for their intraphase behavior analysis. We also present a uniform solution framework of the mission reliability for FTMPS with generally distributed phase durations. Compared with existing methods based on deterministic and stochastic Petri nets or Markov regenerative stochastic Petri nets, our approach is more simple in concept and powerful in computation. Two examples of FTMPS are analyzed to illustrate the advantages of our approach.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,