Article ID Journal Published Year Pages File Type
808263 Theoretical and Applied Mechanics Letters 2014 29992 Pages PDF
Abstract

The natural convective heat transfer performance of an aluminum hexagonal honeycomb acting as a novel heat sink for LED cooling is experimentally investigated. The concept of adding an adiabatic square chimney extension for heat transfer enhancement is proposed, and the effects of chimney shape, height, and diameter are quantified. The average N uav of a heated honeycomb with straight chimney is significantly higher than that without chimney, and the enhancement increases with increasing chimney height. At a given chimney height, honeycombs with divergent chimneys perform better than those with convergent ones. For a fixed divergent angle, the N uav number increases monotonically with increasing chimney height. In contrast, with the convergent angle fixed, there exists an optimal chimney height to achieve maximum heat transfer.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering