Article ID Journal Published Year Pages File Type
8083702 Nuclear Engineering and Technology 2018 7 Pages PDF
Abstract
In this research paper, the thermal transport in thorium dioxide is investigated by using nonequilibrium molecular dynamics. The thermal conductivity of bulk thorium dioxide was measured to be 20.8 W/m-K, confirming reported values, and the phonon mean free path was estimated to be between 7 and 8.5 nm at 300 K. It was observed that the thermal conductivity of thorium dioxide shows a strong dependency on temperature; the highest thermal conductivity was estimated to be 77.3 W/m-K at 100 K, and the lowest thermal conductivity was estimated to be 4.3 W/m-K at 1200 K. In addition, by simulating thorium dioxide structures with different lengths at different temperatures, it was identified that short wavelength phonons dominate thermal transport in thorium dioxide at high temperatures, resulting in decreased intrinsic phonon mean free paths and minimal effect of boundary scattering while long wavelength phonons dominate the thermal transport in thorium dioxide at low temperatures.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , ,