Article ID Journal Published Year Pages File Type
8083850 Nuclear Engineering and Technology 2018 7 Pages PDF
Abstract
This study proposes a new method of analyzing the burnup credit in boiling water reactor spent fuel assemblies against various operating parameters. The operating parameters under investigation include fuel temperature, axial burnup profile, axial moderator density profile, and control blade usage. In particular, the effects of variations in one and two operating parameters on the curve of effective multiplication factor (keff) versus burnup (B) are, respectively, the so-called single and compound effects. All the calculations were performed using SCALE 6.1 together with the Evaluated Nuclear Data Files, part B (ENDF/B)-VII238-neutron energy group data library. Furthermore, two geometrical models were established based on the General Electric (GE)14 10 × 10 boiling water reactor fuel assembly and the Generic Burnup-Credit (GBC)-68 storage cask. The results revealed that the curves of keff versus B, due to single and compound effects, can be approximated using a first degree polynomial of B. However, the reactivity deviation (or changes of keff,Δk) in some compound effects was not a summation of the all Δk resulting from the two associated single effects. This phenomenon is undesirable because it may to some extent affect the precise assessment of burnup credit. In this study, a general formula was thus proposed to express the curves of keff versus B for both single and compound effects.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , ,