Article ID Journal Published Year Pages File Type
8083932 Nuclear Engineering and Technology 2017 17 Pages PDF
Abstract
The boundary layer of a two-dimensional forced convective flow along a persistent moving horizontal needle in an electrically conducting magnetohydrodynamic dissipative nanofluid was numerically investigated. The energy equation was constructed with Joule heating, viscous dissipation, uneven heat source/sink, and thermal radiation effects. We analyzed the boundary layer behavior of a continuously moving needle in Blasius (moving fluid) and Sakiadis (quiescent fluid) flows. We considered Cu nanoparticles embedded in methanol. The reduced system of governing Partial differential equations (PDEs) was solved by employing the Runge-Kutta-based shooting process. Computational outcomes of the rate of heat transfer and friction factors were tabulated and discussed. Velocity and temperature descriptions were examined with the assistance of graphical illustrations. Increasing the needle size did not have a significant influence on the Blasius flow. The heat transfer rate in the Sakiadis flow was high compared with that in the Blasius flow.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , ,