Article ID Journal Published Year Pages File Type
808397 Reliability Engineering & System Safety 2007 10 Pages PDF
Abstract

This paper extends the approach proposed by the second author in [Rocco et al. Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. In: Tarantola S, Saltelli A, editors. SAMO 2001: Methodological advances and useful applications of sensitivity analysis. Reliab Eng Syst Saf 2003;79(2):149-59 [special issue]] to obtain a robust system design. The approach based on the use of evolutionary algorithms and interval arithmetic finds the maximum-volume inner box (MIB) or the maximal ranges of variation for each variable that preserve pre-specified design/performance requirements. The original single-objective formulation considers the definition of a MIB around a specified centroid (case 1), or around an unspecified centroid (case 2). In this paper, both cases were successfully modified and solved as multiple-objective (MO) problems, showing the advantages of MO formulations in a design-selection decision framework. Special attention is devoted to the unspecified centre MO problem where the computational efficiency could be a critical issue. In that sense, a new procedure based on the “percentage representation” is proposed. This approach reduces drastically the computational burden, extending the possibilities of use of robust design.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,