Article ID Journal Published Year Pages File Type
8085165 Progress in Nuclear Energy 2015 6 Pages PDF
Abstract
Thermal conductivities of UO2, PuO2 and (U0.8,Pu0.2)O2 have been investigated by non-equilibrium molecular dynamics (NEMD) simulation between 300 K and 2000 K. The thermal conductivity was directly calculated by the temperature gradient on the system according to Fourier's law in NEMD simulation. The thermal conductivity obtained from the NEMD simulation decreases with a decrease of the supercell size, which means the phonon scattering occurs at the system boundaries in the microsystem. In addition, the present NEMD simulation, as well as previous EMD simulation studies, clearly shows that the Umklapp process causes the decrease of thermal conductivity at high temperatures. When comparison is made with literature data, the calculated results obtained from the relatively small supercell are in good agreement with the measured ones for the above actinide dioxides.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , ,