Article ID Journal Published Year Pages File Type
8085464 Progress in Nuclear Energy 2015 10 Pages PDF
Abstract
Eulerian two-fluid model coupled with wall boiling model was employed to calculate the three dimensional flow field and heat transfer characteristics in a hot channel with vaned spacer grid in PWR. The heat transfer from pellet-gap-cladding to coolant was also taken into account by a system coupled code MpCCI. The wall boiling model utilized in this study was validated by Bartolomei experiment data, and a good agreement can be observed. By solving the governing equation in a two-way coupled method, the distribution of temperature in the pellet-gap-cladding region and the distribution of temperature, void fraction and velocity of two-phase flow in coolant channel can be obtained. The influences of spacer grid and mixing vane on the thermal-hydraulic characteristics were analyzed. The heat transfer capacity was strongly improved by the spacer grid and mixing vane, while the flow resistance was also enlarged. Localized volume fraction of vapor phase decreased due to mixing vane, which will decrease the possibility of the departure from nucleate boiling (DNB) and increase the critical heat flux (CHF). By analyzing the temperature and void fraction at cladding outer surface, the critical regions where hot spot may occur were determined.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,