Article ID Journal Published Year Pages File Type
808594 Theoretical and Applied Mechanics Letters 2014 18991 Pages PDF
Abstract

The thermal protection performance of superalloy honeycomb structure in high-temperature environments are important for thermal protection design of high-speed aircrafts. By using a self-developed transient aerodynamic thermal simulation system, the thermal protection performance of superalloy honeycomb panel was tested in this paper at different transient heating rates ranging from 5°C/s to 30°C/s, with the maximum instantaneous temperature reaching 950°C. Furthermore, the thermal protection performance of superalloy honeycomb structure under simulated thermal environments was computed for different high heating rates by using 3D finite element method, and a comparison between calculational and experimental results was carried out. The results of this research provide an important reference for the design of thermal protection systems comprising superalloy honeycomb panel.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering