Article ID Journal Published Year Pages File Type
8086222 Algal Research 2017 11 Pages PDF
Abstract
Wild and cultivated populations of Pyropia haitanensis have frequently experienced extremely low pH conditions in the last few decades. This could potentially threaten the development of the aquaculture of this economically important marine crop. To gain a broader perspective, we investigated the short- (4 h) and long- (7 days) term responses of CO2 concentrating mechanisms (CCMs) of P. haitanensis thalli to large variations in pH. Our study found that a pH of 4 and 5, which mimicked the decreased pH caused by acid rain, resulted in decreased photosynthesis and respiration while leading to the death of P. haitanensis thalli. Thus, acid rain would result in a decline in P. haitanensis production and threaten wild seaweed sources. However, a pH of 6 and 7 enhanced the growth of P. haitanensis thalli by > 30%, mainly because increased CO2 levels favored photosynthesis, while the algae need to effectively maintain intracellular pH homeostasis to support rapid growth rates. The contributions of extracellular carbonic anhydrases (eCAs) to photosynthetic rates remained at > 77% when pH ≥ 7, regardless of the treatment time. However, at pH 6, the contribution of eCAs to photosynthesis increased from 25% for a short-term treatment to 66% for a long-term treatment. Thus, except for work on carbon assimilation, this study proposes that the CCMs component involved in the movement and metabolism of inorganic carbon may play an important role in pH homeostasis. In addition, pH 9 also led to the death of P. haitanensis thalli, which is consistent with observations of the natural distribution of this algae and hints that P. haitanensis thalli prefer to use inorganic carbon via eCAs when pH ≥ 7. The present study suggested that the actual variation in pH experienced by marine organisms needs to be considered in the experimental design of related studies.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , , ,