Article ID Journal Published Year Pages File Type
808758 Theoretical and Applied Fracture Mechanics 2011 8 Pages PDF
Abstract

Despite their high performances, composites with polymer matrix are very sensible to the increase in temperature and moisture concentration. During long years of services, both phenomena cause a critical transient hygrothermal transverse stresses, particularly at first-ply; i.e. at two edges of the composite plates. Therefore, significant degradation of hygrothermal characteristics and ultimate strengths of materials are occurred. To get an explicit relation between the durability and the damage probability of the composite, quadratic failure criterion in stress space is used. This criterion enables us to find a direct relation between transient hygrothermal stresses produced by the increase in temperature and moisture concentration and the ultimate strengths. It is necessary to calculate the strength ratio R from initial to saturation time for each condition imposed of temperature and moisture concentration. The strength ratio gives a point of view on the damage probability of the composite plates, where the rupture occurs if R = 1. In order to limit the consequences of simultaneous effects of temperature and moisture concentration, unidirectional hybrid composites in graphite epoxy was proposed. To reach this aim, hygrothermal transverse stresses are calculated through the thickness of unidirectional hybrid plate. Finally, the strength ratio was evaluated along of the plate with a gradual increase in temperature and moisture concentration.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,