Article ID Journal Published Year Pages File Type
8088607 Geothermics 2018 10 Pages PDF
Abstract
Drilling parameters are analyzed here to improve forecasting of the rate of penetration (ROP) in enhanced geothermal systems (EGSs). Data recorded during drilling a 4.2-km-deep well at a pilot EGS project in South Korea were analyzed. The greatly fluctuating ROP values were smoothed using a fast Fourier transform filter. Two drilling optimization methods (multiple regression and artificial neural networks) then evaluated the effect of smoothing: it improved ROP prediction in both cases, with over 90% correlation at relatively low degrees of filtering. A methodology to optimize the degree of smoothness for a given drilling data set is suggested.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,