Article ID Journal Published Year Pages File Type
808881 Additive Manufacturing 2016 7 Pages PDF
Abstract

Continuous carbon nanotube (CNT) yarn filaments can be employed as an inherently multifunctional feedstock for additive manufacturing (AM). With this material, it becomes possible to use a single material to impart multiple functionalities in components and take advantage of the tailorability offered by fused filament fabrication (FFF) over conventional fabrication techniques. Some of the challenges associated with coupling this emerging material with advanced processing are addressed here through the fabrication and characterization of additively manufactured functional objects. Continuous CNT yarn reinforced Ultem® specimens are characterized to determine their mechanical and electrical properties. The potential to produce net shape fabricated multifunctional components is demonstrated by additively manufacturing a quadcopter frame using Ultem® and continuous CNT yarn reinforced Ultem®, where the CNT yarn reinforcement was designed to also act as the electrical conductors carrying current to the motors.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , , , , , ,