Article ID Journal Published Year Pages File Type
80946 Solar Energy Materials and Solar Cells 2007 6 Pages PDF
Abstract

Single crystals CuInS2 were grown by iodine vapour transport method, whereas polycrystalline thin films were obtained by coevaporation technique from three sources. The temperature dependence of the hole mobility in valence band is analysed by taking into account contributions from several scattering mechanisms of the charge carriers. To account for the temperature dependant conductivity of polycrystalline CuInS2 thin films, grainboundary conduction process was suggested. In the low temperature region, we interpret the data in terms of the Mott law and the analysis is very consistent with the variable range hopping. However, thermionic emission is predominant at high temperatures. Photoluminescence measurements have been performed on CuInS2 crystals and the analysis has revealed that the emission is mainly due to free-to-bound and donor–acceptor pair transitions. The band gap of that compound is derived from the excitonic emission line at 1.53 eV.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , , ,