Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8101128 | Journal of Cleaner Production | 2016 | 28 Pages |
Abstract
Developing new methodologies for nondeterministic polynomial (NP-hard) problems such as supply chain network design is always a major consideration for academia and practitioners. In this paper a cross-entropy (CE) based solution methodology is developed in order to cope with complex combinatorial problems. The NP-hard problem of designing and planning a closed-loop supply chain (CLSC) is considered. Furthermore, a multi-product multi-period CLSC network in a mixed-integer programming structure is regarded. On the other side, cross-entropy is one of the newly developed and successful metaheuristic algorithms. Thus, in order to achieve better solutions in comparison with current solution methodologies, a cross-entropy algorithm is developed for the first time in CLSC design and planning. Then, the capabilities of the cross-entropy algorithm are elevated, in order to achieve solutions that are more robust. Therefore, an algorithm, which is called “advanced cross-entropy” (ACE) is proposed. Finally, two presented CE-based algorithms are compared with a developed genetic algorithm (GA) for the same problem. GA is the most well-known metaheuristic algorithm, which has been abundantly developed in CLSC. Results prove that both of proposed CE-based algorithms dominate current methodologies. Both can find acceptable solutions in comparison with GA. Furthermore, the proposed advanced cross-entropy performs even better than CE in the quality of solutions and time.
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
Zhigang Wang, Hamed Soleimani, Devika Kannan, Lei Xu,