Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8103483 | Journal of Cleaner Production | 2015 | 27 Pages |
Abstract
With increasing global resource scarcity, waste becomes a resource that can be managed globally. A reverse supply chain network for waste recycling needs to process all the waste with minimum costs and environmental impact. As re-processing of waste is one of the major sources of pollution in the recycling processes, a mechanism is needed to control and reduce the emission impact in the re-processing as a key to facilitate the globalized reverse supply chain and avoid spreading pollutants overseas. Emission Trading Schemes (ETS) can function as policy instruments for controlling emissions. The ETS introduces a trade-off between the economic efficiency and the environmental impacts. ETS has been implemented in Europe and is developing rapidly in China too. The aim of the research is to re-design a reverse supply chain from a global angle based on a case study conducted on household plastic waste distributed from Europe to China. Emission trading restrictions are set on the processing plants in both Europe and China. We modeled a network optimization problem using integer programing approach, allowing the re-allocation of intermediate processing plants under emission trading restrictions. Optimization results show that global relocation of re-processors leads to both a reduction of total costs and total transportation emission. ETS applied to re-processors further helps to reduce emissions from both re-processing and transportation sectors. Carbon cap should be carefully set in order to be effective. With a given carbon cap, the model also shows the effective carbon price range. These results give an insight into the feasibility of building a global reverse supply chain for household plastic waste recycling and demonstrate the impact of ETS on the network design.
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
Xiaoyun Bing, Jacqueline Bloemhof-Ruwaard, Amin Chaabane, Jack van der Vorst,