Article ID Journal Published Year Pages File Type
81066 Solar Energy Materials and Solar Cells 2007 5 Pages PDF
Abstract

Thin films of amorphous and polycrystalline tungsten oxide were produced by reactive dc magnetron sputtering and nanocrystalline films were deposited by advanced gas evaporation. The films were submitted to electrochemical intercalation of Li ions before infrared reflectance measurements were carried out. For crystalline films, the reflectance in the wavelength region 10–30 μm increases upon intercalation, indicating an increasing free-electron contribution. On the other hand, all the films display an increased absorption at wavelengths less than 10 μm when intercalated. The thermal emittance could be varied from about 0.5 to 0.7–0.75 by intercalation in films with thicknesses in excess of 1 μm. Both absorption and interference contribute to the emittance contrast.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , ,