Article ID Journal Published Year Pages File Type
81085 Solar Energy Materials and Solar Cells 2006 8 Pages PDF
Abstract

The paper analyses the electronic transport of high-efficiency silicon solar cells with high-quality back contacts that use a sequence of amorphous (a-Si) and microcrystalline (μc-Si) silicon layers prepared at a maximum temperature of 220 °C. Our best solar cells having diffused emitters with random texture and full-area a-Si/μc-Si contacts have an independently confirmed efficiency of 21.0%. An alternative concept uses a simplified a-Si layer sequence combined with Al-point contacts and yields a confirmed efficiency of 19.3%. Analysis of the internal quantum efficiency (IQE) shows that both types of back contacts lead to effective diffusion lengths Leff exceeding the wafer thickness considerably. Fill factor limitations for the full area contacts result from non-ideal diode behavior, possibly due to the injection dependence of the interface recombination velocity.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,