Article ID Journal Published Year Pages File Type
810852 Journal of the Mechanical Behavior of Biomedical Materials 2013 10 Pages PDF
Abstract

One in eight American women develops breast cancer. Of the many patients requiring mastectomy yearly as a consequence, most elect some form of breast reconstruction. Since 2006, only silicone breast implants have been approved by the FDA for the public use. Unfortunately, over one-third of women with these implants experience complications as a result of tissue-material biocompatibility issues, which may include capsular contracture, calcification, hematoma, necrosis and implant rupture. Our group has been working on developing alternatives to silicone. Linear triblock poly(styrene-b-isobutylene-b-styrene) (SIBS) polymers are self-assembling nanostructured thermoplastic rubbers, already in clinical practice as drug eluting stent coatings. New generations with a branched (arborescent or dendritic) polyisobutylene core show promising potential as a biomaterial alternative to silicone rubber. The purpose of this pre-clinical research was to evaluate the material-tissue interactions of a new arborescent block copolymer (TPE1) in a rabbit implantation model compared to a linear SIBS (SIBSTAR 103T) and silicone rubber. This study is the first to compare the molecular weight and molecular weight distribution, tensile properties and histological evaluation of arborescent SIBS-type materials with silicone rubber before implantation and after explantation.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , , , , ,