Article ID Journal Published Year Pages File Type
81089 Solar Energy Materials and Solar Cells 2007 14 Pages PDF
Abstract

The paper reports first on the electrochemical behavior in liquid Li+ electrolytes of 200 nm thick single sol–gel (CeO2)0.81–TiO2 electrochromic (EC) layers deposited by the dip-coating process. The electrolytes were solutions of 1 M LiClO4 dissolved in dry propylene carbonate (PC) (containing 0.03 wt% of water) and wet PC containing up to 10 wt% of water, respectively. Then an electrochemical quartz crystal microbalance was used as a sensitive detector to analyze the mass changes occurring during the Li+ ion exchange processes. These electrochemical processes were studied for 370 nm thick double layers, deposited on gold-coated quartz crystal electrodes and sintered at 450 °C in air. The electrolytes were the same solutions with water content varying from 0.03 up to 3 wt% of water. The processes have been studied in the potential range from −2.0 to +1.0 V vs. Ag/AgClO4 during 100 voltammetry cycles. The composition of the (CeO2)0.81–TiO2 layers was found to change during the early cycles, mainly because of an irreversible Li+ intercalation. It was found, however, that the mass change observed during cycling is not due only to a pure Li+ ion exchange process but also involves the adsorption/desorption or exchange of other cations and anions contained in the electrolyte. These ions are Li+ and ClO4− in dry electrolyte and Li+, hydrated Li(H2O)n+ and ClO4− in wet electrolyte. The improvement of the reversibility of the intercalation and deintercalation processes as well as the faster kinetics observed in wet electrolytes are finally discussed in terms of a model in which the formation of hydrated Li+ ions takes an important role.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , ,