Article ID Journal Published Year Pages File Type
810980 Journal of the Mechanical Behavior of Biomedical Materials 2013 12 Pages PDF
Abstract

The passive mechanical properties of muscle tissue are important for many biomechanics applications. However, significant gaps remain in our understanding of the three-dimensional tensile response of passive skeletal muscle tissue to applied loading. In particular, the nature of the anisotropy remains unclear and the response to loading at intermediate fibre directions and the Poisson's ratios in tension have not been reported. Accordingly, tensile tests were performed along and perpendicular to the muscle fibre direction as well as at 30°, 45° and 60° to the muscle fibre direction in samples of Longissimus dorsi muscle taken from freshly slaughtered pigs. Strain was measured using an optical non-contact method. The results show the transverse or cross fibre (TT′) direction is broadly linear and is the stiffest (77 kPa stress at a stretch of 1.1), but that failure occurs at low stretches (approximately λ=1.15). In contrast the longitudinal or fibre direction (L) is nonlinear and much less stiff (10 kPa stress at a stretch of 1.1) but failure occurs at higher stretches (approximatelyλ=1.65). An almost sinusoidal variation in stress response was observed at intermediate angles. The following Poisson's ratios were measured: VLT=VLT′=0.47, VTT′=0.28 and VTL=0.74. These observations have not been previously reported and they contribute significantly to our understanding of the three dimensional deformation response of skeletal muscle tissue.

Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , , , ,