Article ID Journal Published Year Pages File Type
8112916 Renewable and Sustainable Energy Reviews 2016 16 Pages PDF
Abstract
In this contribution, Structural Health Monitoring (SHM) systems applied to wind turbines (WTs) are considered. Challenges resulting from contradictions between requirements related to efficient operation with respect to energy production costs and those related to lifetime and maintenance are discussed. Especially pronounced in larger WT systems, structural loads contribute to lifetime shortening due to damage accumulation and damage-caused effects influencing subsystems of the wind turbine. Continuous monitoring of the WT system concerning State-of-Health is necessitated to provide information about the condition of the system guaranteeing reliable and efficient operation, as well as efficient energy extraction. In recent years, structural health monitoring of WT systems is significantly improved through automated on-line fault detection and health or condition monitoring (CM) system integration. In this contribution the focus is given to hardware components (mainly sensor technologies) and methods used for change evaluation, damage detection, and damage accumulation estimation. Accordingly, this contribution comprises recent knowledge about methods and approaches of handling structural loads with emphasis on offshore wind turbine systems and applied sensing technologies (especially with respect to wind turbine blades, gearboxes, and bearings) and partly hardware. Moreover, a brief sketch of an advanced concept is developed concerning structural load examination affected by operating conditions. Key idea of the introduced approach is to use the operating conditions to control and especially to extend system׳s lifetime. The review presents an actual state-of-the-art and overview related to the use and application of SHM-related technologies and methods. Especially in combination with the briefly introduced lifetime extension concept, the contribution gives comprehensive and detailed overview in combination with an outlook to upcoming technological options.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,