Article ID Journal Published Year Pages File Type
8114202 Renewable and Sustainable Energy Reviews 2016 7 Pages PDF
Abstract
This paper reviews solar-selective coatings for concentrating solar power (CSP) applications. CSP systems require direct sunlight and solar tracking and utilize solar absorbers to convert sunlight to thermal electric power. Because this system receives direct sunlight which operating temperatures higher than 600 °C, heat-resistance new materials are needed to cope with. This paper presents a simple and low-cost process for depositing the high-temperature solar absorber. The high selective absorbing Fe2O3 films deposited on stainless steel (SS304) substrates to be absorbers by high thermal process at 850-1050 °C. The crystalline structure, surface microstructure and optic properties of the films were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV/visible spectroscopy (UV-vis-NIR Spectrophotometer, 0.25-2.5 μm). Optimal Fe2O3 films on SS304 substrates at (900-1000 °C) displayed high absorptivity (α) (0.909-0.922) and their emittance values(ε) are relatively low (0.18-0.38). This study proved the possibility of preparing high-temperature solar selective absorbing coatings with high solar absorptance and low emittance by using a simple thermal oxidation process. Those films have very good prospects for solar absorber because of simple process, low-cost, large-area and good performance.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,