Article ID Journal Published Year Pages File Type
8121242 Renewable and Sustainable Energy Reviews 2013 12 Pages PDF
Abstract
This paper presents the application of Mixed-Integer Programming (MIP) approach for solving the security-constrained daily hydrothermal generation Scheduling which takes into account the intermittency and volatility of wind power generation, which is called Security-Constrained Wind Hydrothermal Coordination (WHTC). In restructured power systems, Independent System Operators (ISOs) execute the Security-Constrained Unit Commitment (SCUC) program to plan a secure and economical hourly generation schedule for the daily/weekly-ahead market. The objective of security-constrained daily hydrothermal generation scheduling is to determine an optimum schedule of generating units for minimizing the cost of supplying energy and ancillary services with considering network security constraints. The problem formulation includes dynamic ramp-rate constraints for generation schedules and reserve activation, and minimum up-time and down-time of conventional units. Of particular interest in this study are considering more practical constraints and rigorous modeling of thermal and hydro units such as prohibited operating zones and valve loading effects. Furthermore, for the hydro plants, multi performance curve with spillage and time delay between reservoirs are considered. To assess the efficiency and powerful performance of mentioned method, a typical case study based on modified IEEE-118 bus system is investigated and the results are compared to each other in different test system.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,