Article ID Journal Published Year Pages File Type
8123748 International Journal of Coal Geology 2016 12 Pages PDF
Abstract
Our analyses of different datasets reveal that the thickness of intrusions and their positions with respect to the Hoskissons coal interval are variable in the studied wells. Permeability varies from 1091 mD down to zero owing to heterogeneous fracture and cleat systems. Interpreted natural fracture/cleat systems are well correlated with measured permeability from DST data analysis. This highlights the role of open natural fractures/cleats in fluid flow characteristics of the Hoskissons coal interval. Results indicate that the mineralizing effect of hydrothermal fluids derived either from magmatic intrusions or coal itself is not a controlling factor in fluid flow capacity of the Hoskissons coal interval in the studied wells. This is described by either the distance between coal section and major intrusions in some wells or perhaps emplacement of intrusive bodies prior to development of cleat and natural fracture networks. The destructive impact of intrusions on permeability is observed in one of the studied wells in which in-situ stress perturbation is large (due to presence of magmatic intrusions in sedimentary rocks). Variable in-situ stress orientation can decrease fracture connectivity and consequently fluid flow properties are affected. Gas content largely varies in heat affected coal intervals. This signature is the result of thermal effect fading with distance and is more pronounced when intrusions are in close proximity to coal intervals. Gas composition is variable in the studied wells. Gas composition data indicate that high quality desorbed gas with methane concentration higher than 90% could be found even in coal intervals which are heavily intruded.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , , , ,