Article ID Journal Published Year Pages File Type
8124715 Journal of Petroleum Science and Engineering 2018 12 Pages PDF
Abstract
In this paper, a new skeleton model was proposed to distinguish MFs from pore space via extraction of surface points set of MFs. In the procedure of points set extraction, we improved the classic “MA based” shrink method to “medial surface (MS) based” method for the MFs characterization through introducing a new set of skeleton points (i.e., surface points and edge points of the micro fractures). The former describes their apertures and the latter is used for collecting connectivity information and determining the extension ranges of the MFs. Comparison of connectivity index, fracture length, Euclidean distance showed enhanced effectiveness and accuracy of the proposed method. The proposed method was applied in four ideal models and one field shale core sample. Results show that the proposed skeleton model can show more comprehensible forms of the real connected junction instead of the conventional ideal model. The extracted skeleton can also satisfy demands of the traditional skeleton extraction model and preserve the topology of the original pore-fracture space. This work proposed a more accurate method for pore-scale modeling in cores with natural MFs, and potentially applicable for pore scale flow simulations for tight/shale reservoirs.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , , , ,