Article ID Journal Published Year Pages File Type
8125592 Journal of Petroleum Science and Engineering 2018 29 Pages PDF
Abstract
The main goal of this work is to compare Gradient Tree Boosting, Random Forests, Artificial Neural Networks, and three algorithms of Linear Regression on the prediction of the gaps in well log data. Given the logs from a specific well, we use the intervals with complete information as the training data to learn a regression model of one of the sensors for that well. The algorithms are compared with each other using a few individual example wells with complete information, on which we build artificial gaps to cross validate the results. We show that the ensemble algorithms tend to perform significantly better, and that the results hold when addressing the different examples individually. Moreover, we performed a grid search over the ensembles parameters space, but did not find a statistically significant difference in any situation.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, ,