Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8125628 | Journal of Petroleum Science and Engineering | 2017 | 28 Pages |
Abstract
This work improves the petrophysical estimates previously obtained from the inversion of pressure-step-decay measurements modeled based on only a Klinkenberg-type gas slippage as proposed in the first part. A transitional transport model is implemented to account for the separate and simultaneous occurrence of gas slippage and diffusion across an ultra-tight rock sample during a pressure-step-decay measurement performed in the pore pressure range of 5 psi to 500 psi at room temperature. The proposed interpretation method was applied to nine 2-cm-long, 2.5-cm-diameter core plugs extracted from a 1-ft3 ultra-tight pyrophyllite block. We estimated the intrinsic permeability, effective porosity, pore-volume compressibility, pore throat diameter, and two slippage-diffusion coefficients of each sample. Estimation accuracy relies on the forward model of the fluid flow in ultra-tight rock sample and on the error minimization algorithm implemented in the inversion scheme. For the nine ultra-tight samples, on an average, the estimated intrinsic permeability, effective porosity, pore-volume compressibility, and pore throat diameter are 86 nd, 0.036, 2.6E-3 psiâ1, and 195Â nm, respectively. Notably, the two slippage-diffusion coefficients indicate that the gas transport mechanism in the nine ultra-tight pyrophyllite samples during the pressure-step-decay measurement is completely dominated by slip flow without any Knudsen diffusion or transitional flow, despite the Knudsen numbers across each sample during the entire duration of the pressure-step-decay measurements were determined to be in the range of 0.01-1. This observation contradicts the widely accepted qualitative classification of gas transport mechanism based on the Knudsen numbers and mandates an inversion-based approach to identify the fluid flow mechanism and an appropriate fluid flow model for nanoscale pores.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Economic Geology
Authors
Younas Dadmohammadi, Siddharth Misra, Carl Sondergeld, Chandra Rai,