Article ID Journal Published Year Pages File Type
81276 Solar Energy Materials and Solar Cells 2006 16 Pages PDF
Abstract

ZnO nanowires and structures that combine nanowires and nanoparticles were used as the wide band gap semiconducting photoelectrode in dye-sensitized solar cells (DSSCs). The nanowires provide a direct path from the point of photogeneration to the conducting substrate and offer alternative semiconductor network morphologies to those possible with sintered nanoparticles. Growing nanowires with dendrite-like branched structure greatly enhances their surface area, leading to improved light harvesting and overall efficiencies. Hybrid cells based on a combination of nanowires and nanoparticles can be tailored to take advantage of both the high surface area provided by the nanoparticles and the improved electron transport along a nanowire network. Solar cells made from branched nanowires showed photocurrents of 1.6 mA/cm2, internal quantum efficiencies of 70%, and overall efficiencies of 0.5%. Solar cells made from appropriate hybrid morphologies show photocurrents of 3 mA/cm2 and overall efficiencies of 1.1%, while both the nanowire and hybrid cells show larger open circuit voltages than nanoparticle cells.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, ,