Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
81293 | Solar Energy Materials and Solar Cells | 2006 | 14 Pages |
A density functional theory (DFT) method was used to study the monomer and intermolecular charge-transfer complexes of 22 different alkylpyridines with diiodine. DFT calculations revealed that the σ* orbital of iodine interacts with the nitrogen lone pair in pyridines. The open-circuit photovoltage (Voc) values of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized nanocrystalline TiO2 solar cell with an I−/I3− redox electrolyte in acetonitrile using alkylpyridines additive were compared to computational calculations on the interaction between pyridines and I2 by a DFT method. The optimized geometries, frequency analyses, Mulliken population analyses, and interaction energies suggest that the Voc value of the solar cell is higher, the more alkylpyridine complexes with I2.