Article ID Journal Published Year Pages File Type
81293 Solar Energy Materials and Solar Cells 2006 14 Pages PDF
Abstract

A density functional theory (DFT) method was used to study the monomer and intermolecular charge-transfer complexes of 22 different alkylpyridines with diiodine. DFT calculations revealed that the σ* orbital of iodine interacts with the nitrogen lone pair in pyridines. The open-circuit photovoltage (Voc) values of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) (N719) dye-sensitized nanocrystalline TiO2 solar cell with an I−/I3− redox electrolyte in acetonitrile using alkylpyridines additive were compared to computational calculations on the interaction between pyridines and I2 by a DFT method. The optimized geometries, frequency analyses, Mulliken population analyses, and interaction energies suggest that the Voc value of the solar cell is higher, the more alkylpyridine complexes with I2.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, ,