Article ID Journal Published Year Pages File Type
8132387 Advances in Space Research 2018 29 Pages PDF
Abstract
Tumbling debris has become a great threat to orbit activities. Contactless interaction is a novel concept for active debris removal, through which the tumbling debris no longer rotates freely but is under control. The contactless interaction method aims to de-tumble the debris and then maintain desired relative states between the spacecraft and debris. The spacecraft is simultaneously stabilized through three-axis attitude control, which makes the de-tumbling and capture operation much safer, more effective and accurate. The dynamics and control for the contactless interaction have been little studied in the past years. This paper considers a generic dynamics and control problem for contactless interaction between a spacecraft and debris. A translational and rotational dynamics model of contactless interaction is proposed and the 6-DOF equations are established. The contactless interaction control law is designed with the backstepping method, and the spacecraft three-axis control law is designed with the PD control. Simulation results show that the angular momentum is transferred from the debris to the spacecraft and the debris is thus de-tumbled. The desired relative states are achieved efficiently. Significantly, the spacecraft and debris no longer rotate in the inertial frame and, hence, the safety and accuracy for capture operation are guaranteed.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , ,