Article ID Journal Published Year Pages File Type
8136258 Icarus 2015 22 Pages PDF
Abstract
In this work we quantitatively investigate the influence of plagioclase absorption band on the absorption bands of Fe, Mg minerals using the Modified Gaussian Model - MGM (Sunshine, J.M. et al. [1990]. J. Geophys. Res. 95, 6955-6966). We consider three plagioclase compositions of varying FeO wt.% contents and five mafic end-members (1) 56% orthopyroxene and 44% clinopyroxene, (2) 28% olivine and 72% orthopyroxene, (3) 30% orthopyroxene and 70% olivine, (4) 100% olivine and (5) 100% orthopyroxene, at two different particle sizes. The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). In particular, we show the variation of the plagioclase and composite (plagioclase-olivine) band spectral parameters versus the volumetric iron content related to the plagioclase abundance in mixtures. Generally, increasing the vol. FeO% due to the PL: (1) 1250 nm band deepens with linear trend in mixtures with pyroxenes, while it decreases in mixtures with olivine, with trend shifting from parabolic to linear increasing the olivine content in end-member; (2) 1250 nm band center moves towards longer wavelengths with linear trend in pyroxene-rich mixtures and parabolic trend in olivine-rich mixtures; and (3) 1250 nm band clearly widens with linear trend in olivine-free mixtures, while the widening is only slight in olivine-rich mixtures. We also outline how spectral parameters can be ambiguous leading to an incorrect mineralogical interpretation. Furthermore, we show the presence of an asymmetry of the plagioclase band towards the IR region, resolvable adding a Gaussian in the 1600-1800 nm spectral region.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , ,