Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8137249 | Icarus | 2015 | 11 Pages |
Abstract
High-resolution spectra of Pluto in the 1.66 μm region, recorded with the VLT/CRIRES instrument in 2008 (2 spectra) and 2012 (5 spectra), are analyzed to constrain the spatial and vertical distribution of methane in Pluto's atmosphere and to search for mid-term (4 year) variability. A sensitivity study to model assumptions (temperature structure, surface pressure, Pluto's radius) is performed. Results indicate that (i) no variation of the CH4 atmospheric content (column-density or mixing ratio) with Pluto rotational phase is present in excess of 20%, (ii) CH4 column densities show at most marginal variations between 2008 and 2012, with a best guess estimate of a â¼20% decrease over this time frame. As stellar occultations indicate that Pluto's surface pressure has continued to increase over this period, this implies a concomitant decrease of the methane mixing ratio (iii) the data do not show evidence for an altitude-varying methane distribution; in particular, they imply a roughly uniform mixing ratio in at least the first 22-27 km of the atmosphere, and high concentrations of low-temperature methane near the surface can be ruled out. Our results are also best consistent with a relatively large (>1180 km) Pluto radius. Comparison with predictions from a recently developed global climate model indicates that these features are best explained if the source of methane occurs in regional-scale CH4 ice deposits, including both low latitudes and high Northern latitudes, evidence for which is present from the rotational and secular evolution of the near-IR features due to CH4 ice. Our “best guess” predictions for the New Horizons encounter in 2015 are: a 1184 km radius, a 17 μbar surface pressure, and a 0.44% CH4 mixing ratio with negligible longitudinal variations.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Space and Planetary Science
Authors
E. Lellouch, C. de Bergh, B. Sicardy, F. Forget, M. Vangvichith, H.-U. Käufl,