Article ID Journal Published Year Pages File Type
8137904 Icarus 2014 39 Pages PDF
Abstract
Scattering by particles significantly smaller than the wavelength is an important physical process in the icy and rocky bodies in our Solar System and beyond. A number of observations of spectral bluing (referred to in those papers as 'Rayleigh scattering') on planetary surfaces and cometary comas have been recently reported, however, the necessary mathematical modeling of this phenomenon has not yet achieved maturity. This paper is a first step to this effect, by examining the effect of grain size and optical index on the albedo of small conservative and absorbing particles as a function of wavelength. The conditions necessary for maximization of spectral bluing effects in real-world situations are identified. We find that any sufficiently narrow size distribution of scattering particles will cause spectral bluing in some part of the EM spectrum regardless of its optical index. We also investigate the effect of including a distribution of particle sizes.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
,