Article ID Journal Published Year Pages File Type
8139537 Journal of Atmospheric and Solar-Terrestrial Physics 2018 8 Pages PDF
Abstract
Global reanalysis data reveal daily surface pressure responses to changes in the global ionospheric potential in both polar and sub-polar regions. We use 21 years of data to show that the pressure response to externally-induced ionospheric potential changes, that are due to the interplanetary magnetic field east-west (IMF By) component, are present in two separate decadal intervals, and follow the opposite ionospheric potential changes in the Arctic and Antarctic for a given By. We use the 4 years of available data to show that the pressure responses to changes in internally generated ionospheric potential, that are caused by low-latitude thunderstorms and highly electrified clouds, agree in sign and sensitivity with those externally generated. We have determined that the daily varying pressure responses are stronger in local winter and spring. The pressure responses at polar latitudes are predominantly over the Antarctic and Greenland ice caps, and those at sub-polar latitudes are of opposite sign, mainly over oceans. A lead-lag analysis confirms that the responses maximize within two days of the ionospheric potential input. Regions of surface pressure fluctuating by about 4 hPa in winter are found with ionospheric potential changes of about 40 kV. The consistent pressure response to the independent external and internal inputs strongly supports the reality of a cloud microphysical mechanism affected by the global electric circuit. A speculative mechanism involves the ionosphere-earth current density Jz, which produces space charge at cloud boundaries and electrically charged droplets and aerosol particles. Ultrafine aerosol particles, under the action of electro-anti-scavenging, are enabled to grow to condensation nuclei size, affecting cloud microphysics and cloud opacity and surface pressure on time scales of hours.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , , ,