Article ID Journal Published Year Pages File Type
8139781 Journal of Atmospheric and Solar-Terrestrial Physics 2018 8 Pages PDF
Abstract
Combining limb and nadir satellite observations of Polar Mesospheric Clouds (PMCs) has long been recognized as problematic due to differences in observation geometry, scattering conditions, and retrieval approaches. This study offers a method of comparing PMC brightness observations from the nadir-viewing Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument and the limb-viewing Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). OSIRIS and CIPS measurements are made comparable by defining a common volume for overlapping OSIRIS and CIPS observations for two northern hemisphere (NH) PMC seasons: NH08 and NH09. We define a scattering intensity quantity that is suitable for either nadir or limb observations and for different scattering conditions. A known CIPS bias is applied, differences in instrument sensitivity are analyzed and taken into account, and effects of cloud inhomogeneity and common volume definition on the comparison are discussed. Not accounting for instrument sensitivity differences or inhomogeneities in the PMC field, the mean relative difference in cloud brightness (CIPS - OSIRIS) is −102 ± 55%. The differences are largest for coincidences with very inhomogeneous clouds that are dominated by pixels that CIPS reports as non-cloud points. Removing these coincidences, the mean relative difference in cloud brightness reduces to −6 ± 14%. The correlation coefficient between the CIPS and OSIRIS measurements of PMC brightness variations in space and time is remarkably high, at 0.94. Overall, the comparison shows excellent agreement despite different retrieval approaches and observation geometries.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , , , , , ,