Article ID Journal Published Year Pages File Type
8139994 Journal of Atmospheric and Solar-Terrestrial Physics 2016 12 Pages PDF
Abstract
A multichannel photometer (MCP) instrument, designed with filters for three specific airglow emissions, OH Meinel (5-1), (6-2), 840 nm; O2 (b) (0,1), 865 nm; and O(S1), 557.7 nm, as well as background, is used to observe atmospheric wave perturbations to layers in the local zenith with high temporal resolution (∼5 s). By measuring the relative phase of propagating waves through the layers, with known altitude separation, we deduce the vertical wavelength. We describe here the instrument attributes, a unique background subtraction technique, and the validation of a new method for determining intrinsic wave parameters via MCP and imager data that can be taken from various platforms, including ground-based and spacecraft platforms. Vertical wavelengths deduced using this method are in close agreement with those measured using LIDAR temperatures as well as those calculated with the dispersion relation using a combination of all-sky imager (horizontal wavelength) and meteor radar (winds) data.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , , ,