Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8143113 | Planetary and Space Science | 2015 | 17 Pages |
Abstract
Then utilizing the entire catalog of inner solar system minor planet orbits out to Jupiter as a proxy for the distribution of potential impactors throughout the inner solar system, we calculated the meteorite flux and impact velocities for a number of airless bodies to use them for estimates of survival times of rock boulders on their surfaces (normalized to those for lunar boulders). We found that if the average survival time for meter-size rock boulders on the surface of the Moon is 1, then considering rupture by the meteorite impacts as the major process of rock destruction, for Phobos it is ~0.8, for Deimos ~0.7, for asteroid Itokawa ~1, for Eros ~0.3, for Vesta and Ceres ~0.03 and for the average of the first 150 Trojans discovered is ~12.5. Implications of these findings are that on the surfaces of Vesta and Ceres, compared to the Moon, the regolith layer should generally have a larger thickness and higher maturity, while small craters with rocky ejecta are rare. On the typical Trojans, where impact flux is closer to that on the Moon, but the impact velocities are by factor 4 lower, the situation should be the opposite: thinner layer of regolith, lower maturity and a larger percentage of small craters with rocky ejecta. These predictions and observations can be tested with future robotic and human exploration of the Moon and small bodies.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geophysics
Authors
A.T. Basilevsky, J.W. Head, F. Horz, K. Ramsley,