Article ID Journal Published Year Pages File Type
8143999 Planetary and Space Science 2013 6 Pages PDF
Abstract
The ESA's Rosetta spacecraft will arrive at comet 67P/Churyumov-Gerasimenko in 2014. The study of gas and dust emission is primary objective of several instruments on the Rosetta spacecraft, including the Microwave Instrument for the Rosetta Orbiter (MIRO). We developed a model of dust thermal emission to estimate the detectability of dust in the vicinity of the nucleus with MIRO. Our model computes the power received by the MIRO antenna in limb viewing as a function of the geometry of the observations and the physical properties of the grains. We show that detection in the millimeter and submillimeter channels can be achieved near perihelion.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , , , , , ,