Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8144815 | Chinese Journal of Physics | 2018 | 21 Pages |
Abstract
Stochastic resonance (SR) is a vital approach to detect weak signals submerged in strong background noise, which is useful for mechanical fault diagnosis. The underdamped bistable SR (UBSR) is a kind of the most used SR, however, their potential structures are deficient to match with the complicated and diverse mechanical vibration signals and their parameters are selected subjectively which probably resulting in poor performance of UBSR. To overcome these shortcomings, this paper proposes an underdamped SR with exponential potential (UESR) which is generalized by using a harmonic model and a Gaussian potential (GP) model. The dynamics in UESR system is evaluated by the signal-to-noise ratio (SNR) which represents the effectiveness of noise utilization. Then, the effects of system parameters on system performance are investigated by output SNR versus noise intensity D for different parameters. Finally, the proposed method is used to process bearing experimental data and further perform bearing fault diagnosis. The experimental results demonstrate that a larger output SNR and higher spectrum peaks at fault characteristic frequencies can be obtained by the proposed method compared with the UBSR method, which confirm the effectiveness of the proposed method.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Atomic and Molecular Physics, and Optics
Authors
Li-fang He, Li Cao, Gang Zhang, Tian Yi,