Article ID Journal Published Year Pages File Type
8145070 Chinese Journal of Physics 2018 23 Pages PDF
Abstract
Condition monitoring of rotating machinery is important to extend the mechanical system's reliability and operational life. However, in many cases, useful information is often overwhelmed by strong background noise and the defect frequency is difficult to be extracted. Stochastic resonance (SR) is used as a noise-assisted tool to amplify weak signals in nonlinear systems, which can detect weak signals of interest submerged in the noise. The multiscale noise tuning SR (MSTSR), which is originally based on discrete wavelet transform (DWT), has been applied to identify the fault characteristics and has also increased the signal-to-noise ratio (SNR) improvement of SR. Therefore, a novel tri-stable SR method with multiscale noise tuning (MST) is proposed to extract fault signatures for fault diagnosis of rotating machinery. The wavelet packets transform (WPT) based MST can obtain better denoising effect and higher SNR of resonance output compared with the traditional SR method. Thus the proposed method is well-suited for enhancement of rotating machine fault identification, whose effectiveness has been verified by means of practical vibration signals carrying fault information from bearings. Finally, it can be concluded that the proposed method has practical value in engineering.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Atomic and Molecular Physics, and Optics
Authors
, , , ,