Article ID Journal Published Year Pages File Type
814553 Rare Metal Materials and Engineering 2016 5 Pages PDF
Abstract

The diluent NaCl was introduced into the WO3-Mg-C-Na2CO3 system to prepare submicron tungsten carbide (WC) powders via salt-assisted combustion synthesis. The products were analyzed by SEM, EDS and XRD, and the effects of C content on morphology, average particle size and phase composition of the products were studied. Results show that on basis of the m = 0.125 (the number of moles of Na2CO3), when the number of moles of carbon in raw material increases from l =2 to 2.25 and 2.5, before leaching, the product is made up of a small number of large size particles and a large number of small size particles; after leaching, samples are composed of aggregates of submicron particles, and the sintering phenomenon between particles is very weak, indicating low degree of aggregation. Particle size distribution of leached product almost falls into the normal distribution, and the particle sizes range from 200 nm to 350 nm. Under the condition of l=2.25, a main target product is WC, and the content of by-products W2C is extremely few. That is, k = 2.0 (the number of moles of NaCl), m = 0.125, and l =2.25 are the process conditions for single-phase WC synthesis.

Related Topics
Physical Sciences and Engineering Engineering Mechanics of Materials
Authors
, , , , , ,