Article ID Journal Published Year Pages File Type
8149262 Journal of Crystal Growth 2016 9 Pages PDF
Abstract
Fluid flow, heat transfer, and species transport with chemical reactions have been investigated for gallium nitride (GaN) growth in a commercial metal-organic chemical vapor deposition (MOCVD) reactor. Both the growth rate and the growth uniformity are investigated zone by zone, as the wafers are divided into three zones/groups according to their distances to the susceptor center. The results show that species transport in the reactor is affected by the inlet conditions, i.e., the premixed or non-premixed inlet, the inlet temperature, the total gas flow rate, and the V/III component ratio, and reveal that the premixed inlet condition is preferred for uniform growth. Especially, a large total flow rate or a low V/III ratio results in both increase of the growth rate and improvement of the growth uniformity.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,