Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8149537 | Journal of Crystal Growth | 2016 | 7 Pages |
Abstract
Tetramethylsilane (TMS) was recently proposed as a safe precursor for SiC single crystal growth through high temperature chemical vapor deposition (HTCVD). Because the C content of TMS is much higher than Si, the exhaust gas from the TMS-based HTCVD contains large amounts of C which is condensed in the outlet. Because the condensed C close to the crystal growth front will influence on the thermodynamic equilibrium in the crystal growth, an optimal reactor design was highly required to exclude the effect of the condensed carbon. In this study, we report on a mass/heat transfer analysis using the finite element method (FEM) in an attempt to design an effective reactor that will minimize the effect of carbon condensation in the outlet. By applying the proposed reactor design to actual growth experiments, single 6H-SiC crystals with diameters of 50Â mm were successfully grown from a 6H-SiC seed. This result confirms that the proposed reactor design can be used to effectively grow 6H-SiC crystals using TMS-based HTCVD.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Ji-Young Yoon, Byeong Geun Kim, Deok-Hui Nam, Chang-Hyoung Yoo, Myung-Hyun Lee, Won-Seon Seo, Yong-Gun Shul, Won-Jae Lee, Seong-Min Jeong,