Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8149958 | Journal of Crystal Growth | 2015 | 5 Pages |
Abstract
Narrow-gap semiconductor PbTe has exhibited versatility in both mid-infrared optoelelctronics and thermoelectrics. However, the absence of commercially obtainable PbTe crystal substrates limits its wide applications. In this paper, heteroepitaxy of high-quality PbTe crystal on GaAs(211) using CdTe/ZnTe buffers by molecular beam epitaxy is presented for the first time. Optimal growth parameters have been obtained by both in-situ and ex-situ characterizations. In-situ reflection high-energy electron diffraction observed a transition of growth mode from 2D to 3D, which is in agreement with the results of atomic force microscope and scanning electron microscope characterizations. High resolution X-ray diffraction revealed that the growth of PbTe crystal is along [531] direction which is different from the [211] substrate orientation. Multiple phonon modes related to PbTe were observed by Raman scattering while mid-infrared light emission from epitaxial PbTe is observed at a peak of 3.5 μm by photoluminescence. Different from PbTe grown on BaF2(111), n-type conductivity with electron densities of ~5Ã1017 cmâ3 and mobilities of 675 cm2/V s at room temperature and 4300 cm2/V s at 2 K is observed. The high quality PbTe grown on GaAs(211) substrates using CdTe/ZnTe buffers renders promising applications in both optoelectronics and thermoelectrics.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Tianyu Shu, Pengqi Lu, Bingpo Zhang, Miao Wang, Lu Chen, Xiangliang Fu, Gangyi Xu, Huizhen Wu,